Idioms

Key to the types and ranks of the arguments in the idioms:

Type	Description
C	Character
B	Boolean
N	Numeric
P	Nested
X	any type

Rank	Description
S	Scalar or single item vector
V	Vector
M	Matrix
A	Array of any rank

The idioms described below must be entered precisely as shown to be recognised.

Idiom	Description
poXA	The rank of XA (returned as a one-element vector)
\#pXA	The rank of XA (returned as a scalar)
BV/ヶNS	The subset of NS corresponding to the 1s in BV
BV/roXV	The positions in XV corresponding to the 1s in BV
	The subset of $X V$ in the index positions defined by NA (equivalent to $X V[N A])$
$X A_{1}\{ \} \times A_{2}$	$X A_{1}$ and $X A_{2}$ are ignored (no result produced)
$X A_{1}\{\alpha\} X A_{2}$	$X A_{1}\left(X A_{2}\right.$ is ignored)
$X A_{1}\{\omega\} X A_{2}$	$X A_{2}\left(X A_{1}\right.$ is ignored)
$X A_{1}\{\alpha \omega\} X A_{2}$	$X A_{1}$ and $X A_{2}$ as a two item vector ($X A_{1} X A_{2}$)
\{0\}XA	0 irrespective of $X A$
\{0\}"XA	0 corresponding to each item of XA
, /PV	The enclose of the items of PV catenated along their last axes
-/PV	The enclose of the items of PV catenated along their first axes
دфXA	The item in the top right of $\mathrm{XA}(\square \mathrm{ML}<2)$
$\uparrow \phi \times A$	The item in the top right of $\mathrm{XA}(\square \mathrm{ML} \geq 2)$
эф, XA	The item in the bottom right of $\mathrm{XA}(\square \mathrm{ML}<2)$
$\uparrow \phi, \mathrm{XA}$	The item in the bottom right of $\mathrm{XA}(\square \mathrm{ML} \geq 2)$
$0=\rho X V$	1 if $X V$ has a shape of zero, 0 otherwise
$0=\rho \rho X A$	1 if XA has a rank of zero (scalar), 0 otherwise
$0=\equiv X A$	1 if XA has a depth of zero (simple scalar), 0 otherwise
$X M_{1}\{(\downarrow \alpha) \imath \downarrow \omega\} \times M_{2}$	A simple vector comprising as many items as there are rows in $X M_{2}$, where each item is the number of the first row in $X M_{1}$ that matches each row in $X M_{2}$. NOTE: Although still recognised, since Dyalog v14.0 this is idiom is no more efficient than $X M_{1}$ 乙 $X M_{2}$
\downarrow ¢ ${ }^{\text {d }}$	A nested vector comprising vectors that each correspond to a position in the original vectors of PV - the first vector contains the first item from each vector in PV, padded to be the same length as the largest vector, and so on ($\square \mathrm{ML}<2$)
\downarrow ¢ \quad PV	A nested vector comprising vectors that each correspond to a position in the original vectors of PV - the first vector contains the first item from each vector in PV, padded to be the same length as the largest vector, and so on ($\square \mathrm{ML} \geq 2$)
${ }^{1} \backslash{ }^{\prime} \quad 1=C A$	A Boolean mask indicating the leading blank spaces in each row of CA
+/^\' ' = CA	The number of leading blank spaces in each row of CA
+/^\BA	The number of leading 1s in each row of BA
$\{(v \backslash 1$ ' $\neq \omega) / \omega\}$ CV	CV without any leading blank spaces

Idiom	Description
$\left\{\left(+/ \wedge \backslash{ }^{\prime} \quad\right.\right.$ ' $=\omega$) $\left.\downarrow \omega\right\} \mathrm{CV}$	CV without any leading blank spaces
~○' '"ヤCA	A nested vector comprising simple character vectors constructed from the rows of CA (which must be of depth 1) with all blank spaces removed
$\left\{(+/ v \backslash '\right.$ ' $\left.\neq \phi \omega) \uparrow^{\prime \prime} \downarrow \omega\right\}$ CA	A nested vector comprising simple character vectors constructed from the rows of $C A$ (which must be of depth 1) with trailing blank spaces removed
دор"XA	The length of the first axis of each item in $\mathrm{XA}(\mathrm{DML}<2)$
†००"XA	The length of the first axis of each item in $\mathrm{XA}(\square \mathrm{ML} \geq 2)$
$X A_{1}, \leftarrow X^{\prime}$	$X A_{1}$ redefined to be $X A_{1}$ with $X A_{2}$ catenated along its last axis
$X A_{1} ;<X^{\prime}$	$X A_{1}$ redefined to be $X A_{1}$ with $X A_{2}$ catenated along its first axis
$\{(\subset \pm \omega) \square \omega\}$ XA	$X A$ with the major cells sorted into numerical/alphabetical order
$\{(c \downarrow \omega) \square \omega\}$ X	XA with the major cells sorted into reverse numerical/alphabetical order
\{ $\omega[4 \omega]\} \times V$	XV sorted into numerical/alphabetical order
$\{\omega[\downarrow \omega]\} \times V$	XV sorted into reverse numerica//alphabetical order
\{ ω [$4 \omega ;]\} \times \mathrm{M}$	XM with the rows sorted into numerica//alphabetical order
\{ ω [$\dagger \omega ;]\} \times M$	XM with the rows sorted into reverse numerical/alphabetical order
$1=\equiv \mathrm{XA}$	1 if XA has a depth of 1 (simple array), 0 otherwise
$1=\equiv, \mathrm{XA}$	1 if XA has a depth of 0 or 1 (simple scalar, vector, etc.), 0 otherwise
$0 \in \rho \times$ A	1 if XA is empty, 0 otherwise
$\sim 0 \in \mathrm{pXA}$	1 if XA is not empty, 0 otherwise
$\rightarrow+$ XA	The first sub-array along the first axis of XA
-/XA	The first sub-array along the last axis of XA
$1+$ X ${ }^{\text {r }}$	The last sub-array along the first axis of XA
-/XA	The last sub-array along the last axis of XA
*ONA	Euler's idiom (accurate when NA is a multiple of OJO.5)
$0=$ pXA	1 if XA has an empty first dimension, 0 otherwise ($\square \mathrm{ML}<2$)
$0 \neq \bigcirc$ XA	1 if XA does not have an empty first dimension, 0 otherwise ((ML <2)
L0.5+NA	The content of NA with each item rounded to the nearest integer
XA \downarrow ̈̈+NS	XA redefined to be XA with the last -NS items along the leading axis removed; NS should be negative
Davica	Classic edition only: The character numbers (atomic vector index) corresponding to the characters in CA

